
Week 5 - Friday



 What did we talk about last time?
 Minimum spanning trees
 Clustering







 Consider six straight silver chains made up of five links each
 What if you want to make one large circular chain?
 The jeweler will charge $1 for every link that he must cut open 

and then weld close
 What is the cheapest price possible to make the six chains into 

one chain?







 Disk space is finite
 Internet bandwidth is limited
 It is really useful to compress data so that we can use a 

smaller number of bits to represent a larger number of bits
 Iron clad law of compression:
 You cannot always compress a given set of bits into a smaller number 

of bits
 If you could, you could compress anything, eventually, into a single 1 

bit or 0 bit



 Lossless compression transforms one set of bits into another 
(hopefully smaller) set of bits in a completely reversible way

 No bits are lost
 Examples of lossless compression:
 Zip files
 PNG image files
 FLAC format for audio



 Lossy compression transforms one set of bits into a (usually 
smaller) set of bits in a way that loses information
 The original bits may not be reconstructible

 Lossy compression is mostly useful for media files for which 
the human senses don't notice the lost data

 Examples of lossy compression:
 MPEG encoding used for DVDs and streaming video
 JPEG image files
 MP3 format for audio



 Right now, we're only going to talk about the narrow problem 
of encoding symbols with bits in a lossless way

 How many letters are there in English?
 How many bits would it take to represent all of those letters?
 This is a question we think about in many CS classes because 

of the contortions we have to go through to store characters



 Note that some English letters are used more frequently 
than others:
ETAOINSHRDLU

 It seems like a tremendous waste to encode E with the 
same number of bits as Z



 If we use a smaller number of bits for frequent letters and a larger 
number of bits for rare letters, we might be able to make a much 
smaller document
 Much depends on the frequency distribution

 We also have to pick our encodings carefully:
 a→ 0
 b→ 01
 c→ 11
 d→ 011

 This encoding doesn't work since 011011 could map to acac or dd
or acd or dac.



 We want to make an encoding such that the encoding of one 
letter is not a prefix of the coding of another letter
 Such an encoding is called a prefix code

 If you have a prefix code, you can scan bits from left to right and 
output a letter as soon as it matches

 Example prefix code:
 a→ 11
 b→ 01
 c→ 001
 d→ 10
 e→ 000



 If each letter x has a frequency fx, with n letters total, nfx gives the 
number of occurrences of x in a document

 Let code(x) be the encoding of a letter x and S is the alphabet
 Total length of an encoding is:
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 An optimal prefix code minimizes average encoding length:

�
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 A key idea is that we can represent letters as leaves in a binary 
tree
 Each left turn is a 0
 Each right turn is a 1

 No letter will be the prefix of another
 Why?
 If a letter was the prefix of another, it would be on the path to 

the other letter, but every letter is a leaf



e d c b

a

a→ 1
b→ 011
c→ 010
d→ 001
e→ 000



 Recall that a binary tree is a rooted tree in which each node 
has 0, 1, or 2 children

 A full binary tree is one in which every node that isn't a leaf 
has two children



 Proof by contradiction:
 Let T be a binary tree for an optimal prefix code.  Suppose it contains a 

node u with exactly one child v (and is thus not full).  We can convert T into 
T' by replacing u with v.

 Case 1: u is the root of T
▪ Delete node u and use v as the root

 Case 2: u is not the root of T
▪ Let w be the parent of u.  Delete node u and make v the child of w that u was.

 In both cases letters in leaves below u need one fewer bit, and other leaves 
are not affected.  Since T' uses fewer bits for some letters, T is not 
optimal.  Contradiction. ∎



 We know that the binary tree will be full, but there are many 
full binary trees with n leaves

 Imagine that we had a full binary tree T* that was an optimal 
prefix tree

 We know that the low frequency letters should appear at the 
deepest levels of the tree

 For letters y and z, and corresponding nodes node(y) and 
node(z), if depth(node(y)) < depth(node(z)) then fy ≥ fz.



 If we did, we could label it by putting the highest frequency 
letters in the highest levels of the tree and then going down, 
level by level

 Instead, we work backwards
 The lowest frequency letter must be at the deepest leaf in the 

tree, call it v
 Since this is a full binary tree, v must have a sibling w



 Take the two lowest frequency letters y and z.
 Since they are neighbors in a full tree, we can stick them 

together and treat them like a meta-letter yz with the sum of 
their frequencies.

 Recursively repeat until everything is merged together.



 If S has two letters then
 Encode one with 0 and the other with 1

 Else
 Let y and z be the two lowest-frequency letters
 Form a new alphabet S' by deleting y and z and replacing them with a new 

letter w of frequency fy + fz

 Recursively construct a prefix code for S' with tree T'
 Define a prefix code for S as follows:
▪ Start with T'
▪ Take the leaf labeled w and add two children below it labeled y and z



 The depth of each letter x other than y or z is the same in T and T'.  The depths 
of y and z are each one more than the depth of w in T'.  Recall that fw = fy + fz.
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 Proof by contradiction:
 Suppose that our tree T is not optimal even though it was recursively built 

from an optimal tree T'.  Then there is some other binary tree Z such that 
ABL(Z) < ABL(T).  However, we know that there is such a tree Z where the 
leaves for y and z are siblings.

 If we remove the leaves for y and z from Z and label their parent w, we 
have a tree Z that defines a prefix code for S'.  Since we followed the same 
construction, the proof from the previous slide holds for Z and Z' and 
ABL(Z') = ABL(Z) – fw.

 But since ABL(Z) < ABL(T) and ABL(T) = ABL(T') – fw, it must be the case 
that ABL(Z') < ABL(T'), even though T' was optimal.  Contradiction. ∎



 We recurse k - 1 times over smaller and smaller alphabet sizes 
starting with k

 ∑𝑖𝑖=1𝑘𝑘−1 𝑖𝑖 = 𝑘𝑘(𝑘𝑘−1)
2

which is 𝑂𝑂 𝑘𝑘2

 However, we could use a priority queue which can extract the 
minimum in log k time twice at each step and add an element 
also in log k time, giving 𝑂𝑂 𝑘𝑘 log 𝑘𝑘 time









 Finish exam post mortem
 Divide and conquer
 Merge sort



 Work on Assignment 3
 Due next Friday

 Read section 5.1
 Extra credit opportunities (0.5% each):
 Rublein research talk: 2/9 12:30-1:30 p.m. in Point 140
 Rublein teaching demo: 2/9 3-4 p.m. in Point 140
 Phadke research talk: 2/12 3-4 p.m. in Point 139
 Phadke teaching demo: 2/13 10-10:55 a.m. in Towers 112
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139
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