
Week 5 - Friday

 What did we talk about last time?
 Minimum spanning trees
 Clustering

 Consider six straight silver chains made up of five links each
 What if you want to make one large circular chain?
 The jeweler will charge $1 for every link that he must cut open

and then weld close
 What is the cheapest price possible to make the six chains into

one chain?

 Disk space is finite
 Internet bandwidth is limited
 It is really useful to compress data so that we can use a

smaller number of bits to represent a larger number of bits
 Iron clad law of compression:
 You cannot always compress a given set of bits into a smaller number

of bits
 If you could, you could compress anything, eventually, into a single 1

bit or 0 bit

 Lossless compression transforms one set of bits into another
(hopefully smaller) set of bits in a completely reversible way

 No bits are lost
 Examples of lossless compression:
 Zip files
 PNG image files
 FLAC format for audio

 Lossy compression transforms one set of bits into a (usually
smaller) set of bits in a way that loses information
 The original bits may not be reconstructible

 Lossy compression is mostly useful for media files for which
the human senses don't notice the lost data

 Examples of lossy compression:
 MPEG encoding used for DVDs and streaming video
 JPEG image files
 MP3 format for audio

 Right now, we're only going to talk about the narrow problem
of encoding symbols with bits in a lossless way

 How many letters are there in English?
 How many bits would it take to represent all of those letters?
 This is a question we think about in many CS classes because

of the contortions we have to go through to store characters

 Note that some English letters are used more frequently
than others:
ETAOINSHRDLU

 It seems like a tremendous waste to encode E with the
same number of bits as Z

 If we use a smaller number of bits for frequent letters and a larger
number of bits for rare letters, we might be able to make a much
smaller document
 Much depends on the frequency distribution

 We also have to pick our encodings carefully:
 a→ 0
 b→ 01
 c→ 11
 d→ 011

 This encoding doesn't work since 011011 could map to acac or dd
or acd or dac.

 We want to make an encoding such that the encoding of one
letter is not a prefix of the coding of another letter
 Such an encoding is called a prefix code

 If you have a prefix code, you can scan bits from left to right and
output a letter as soon as it matches

 Example prefix code:
 a→ 11
 b→ 01
 c→ 001
 d→ 10
 e→ 000

 If each letter x has a frequency fx, with n letters total, nfx gives the
number of occurrences of x in a document

 Let code(x) be the encoding of a letter x and S is the alphabet
 Total length of an encoding is:

�
𝑥𝑥∈𝑆𝑆

𝑛𝑛𝑓𝑓𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑛𝑛�
𝑥𝑥∈𝑆𝑆

𝑓𝑓𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥

 An optimal prefix code minimizes average encoding length:

�
𝑥𝑥∈𝑆𝑆

𝑓𝑓𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥

 A key idea is that we can represent letters as leaves in a binary
tree
 Each left turn is a 0
 Each right turn is a 1

 No letter will be the prefix of another
 Why?
 If a letter was the prefix of another, it would be on the path to

the other letter, but every letter is a leaf

e d c b

a

a→ 1
b→ 011
c→ 010
d→ 001
e→ 000

 Recall that a binary tree is a rooted tree in which each node
has 0, 1, or 2 children

 A full binary tree is one in which every node that isn't a leaf
has two children

 Proof by contradiction:
 Let T be a binary tree for an optimal prefix code. Suppose it contains a

node u with exactly one child v (and is thus not full). We can convert T into
T' by replacing u with v.

 Case 1: u is the root of T
▪ Delete node u and use v as the root

 Case 2: u is not the root of T
▪ Let w be the parent of u. Delete node u and make v the child of w that u was.

 In both cases letters in leaves below u need one fewer bit, and other leaves
are not affected. Since T' uses fewer bits for some letters, T is not
optimal. Contradiction. ∎

 We know that the binary tree will be full, but there are many
full binary trees with n leaves

 Imagine that we had a full binary tree T* that was an optimal
prefix tree

 We know that the low frequency letters should appear at the
deepest levels of the tree

 For letters y and z, and corresponding nodes node(y) and
node(z), if depth(node(y)) < depth(node(z)) then fy ≥ fz.

 If we did, we could label it by putting the highest frequency
letters in the highest levels of the tree and then going down,
level by level

 Instead, we work backwards
 The lowest frequency letter must be at the deepest leaf in the

tree, call it v
 Since this is a full binary tree, v must have a sibling w

 Take the two lowest frequency letters y and z.
 Since they are neighbors in a full tree, we can stick them

together and treat them like a meta-letter yz with the sum of
their frequencies.

 Recursively repeat until everything is merged together.

 If S has two letters then
 Encode one with 0 and the other with 1

 Else
 Let y and z be the two lowest-frequency letters
 Form a new alphabet S' by deleting y and z and replacing them with a new

letter w of frequency fy + fz

 Recursively construct a prefix code for S' with tree T'
 Define a prefix code for S as follows:
▪ Start with T'
▪ Take the leaf labeled w and add two children below it labeled y and z

 The depth of each letter x other than y or z is the same in T and T'. The depths
of y and z are each one more than the depth of w in T'. Recall that fw = fy + fz.

ABL 𝑇𝑇 = �
𝑥𝑥∈𝑆𝑆

𝑓𝑓𝑥𝑥 � depth𝑇𝑇(𝑥𝑥)

= 𝑓𝑓𝑦𝑦 � depth𝑇𝑇 𝑦𝑦 + 𝑓𝑓𝑧𝑧 � depth𝑇𝑇 𝑧𝑧 + �
𝑥𝑥≠𝑦𝑦,𝑧𝑧

𝑓𝑓𝑥𝑥 � depth𝑇𝑇 𝑥𝑥

= (𝑓𝑓𝑦𝑦+𝑓𝑓𝑧𝑧) � (1 + depth𝑇𝑇′ 𝑤𝑤) + �
𝑥𝑥≠𝑦𝑦,𝑧𝑧

𝑓𝑓𝑥𝑥 � depth𝑇𝑇′(𝑥𝑥)

= 𝑓𝑓𝑤𝑤 + 𝑓𝑓𝑤𝑤 � depth𝑇𝑇′ 𝑤𝑤 + �
𝑥𝑥≠𝑦𝑦,𝑧𝑧

𝑓𝑓𝑥𝑥 � depth𝑇𝑇′(𝑥𝑥)

= 𝑓𝑓𝑤𝑤 + �
𝑥𝑥∈𝑆𝑆′

𝑓𝑓𝑥𝑥 � depth𝑇𝑇′(𝑥𝑥)

= 𝑓𝑓𝑤𝑤 + ABL 𝑇𝑇′

 Proof by contradiction:
 Suppose that our tree T is not optimal even though it was recursively built

from an optimal tree T'. Then there is some other binary tree Z such that
ABL(Z) < ABL(T). However, we know that there is such a tree Z where the
leaves for y and z are siblings.

 If we remove the leaves for y and z from Z and label their parent w, we
have a tree Z that defines a prefix code for S'. Since we followed the same
construction, the proof from the previous slide holds for Z and Z' and
ABL(Z') = ABL(Z) – fw.

 But since ABL(Z) < ABL(T) and ABL(T) = ABL(T') – fw, it must be the case
that ABL(Z') < ABL(T'), even though T' was optimal. Contradiction. ∎

 We recurse k - 1 times over smaller and smaller alphabet sizes
starting with k

 ∑𝑖𝑖=1𝑘𝑘−1 𝑖𝑖 = 𝑘𝑘(𝑘𝑘−1)
2

which is 𝑂𝑂 𝑘𝑘2

 However, we could use a priority queue which can extract the
minimum in log k time twice at each step and add an element
also in log k time, giving 𝑂𝑂 𝑘𝑘 log 𝑘𝑘 time

 Finish exam post mortem
 Divide and conquer
 Merge sort

 Work on Assignment 3
 Due next Friday

 Read section 5.1
 Extra credit opportunities (0.5% each):
 Rublein research talk: 2/9 12:30-1:30 p.m. in Point 140
 Rublein teaching demo: 2/9 3-4 p.m. in Point 140
 Phadke research talk: 2/12 3-4 p.m. in Point 139
 Phadke teaching demo: 2/13 10-10:55 a.m. in Towers 112
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Assignment 3
	Logical warmup
	Three-sentence Summary of Data Compression
	Data Compression
	Data compression
	Common compression
	Lossy compression
	Encoding symbols with bits
	Cleverly encoding symbols with bits
	Variable length encoding
	Prefix codes
	Optimal prefix codes
	Algorithm design
	Prefix code tree example
	Full binary trees
	An optimal prefix code is represented by a full binary tree
	How can we figure out the tree structure?
	We don't have the structure of T*
	Algorithm description
	Algorithm
	Proof: ABL(T') = ABL(T) - fw
	Our algorithm produces minimum average bits per letter of any prefix code
	Running time of the algorithm
	Exam 1 Post Mortem
	Quiz
	Upcoming
	Next time…
	Reminders

